Analysis of an algebraic Petrov–Galerkin smoothed aggregation multigrid method
نویسندگان
چکیده
منابع مشابه
Analysis of an Algebraic Petrov-Galerkin Smoothed Aggregation Multigrid Method
We give a convergence estimate for a Petrov-Galerkin Algebraic Multigrid method. In this method, the prolongations are defined using the concept of smoothed aggregation while the restrictions are simple aggregation operators. The analysis is carried out by showing that these methods can be interpreted as variational Ritz-Galerkin ones using modified transfer and smoothing operators. The estimat...
متن کاملGeneralizing Smoothed Aggregation-based Algebraic Multigrid
Smoothed aggregation-based (SA) algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. While SA has been effective over a broad class of problems, it has several limitations and weaknesses that this thesis is intended to address. This includes the development of a more robust strength-of-connection ...
متن کاملAn aggregation-based algebraic multigrid method
An algebraic multigrid method is presented to solve large systems of linear equations. The coarsening is obtained by aggregation of the unknowns. The aggregation scheme uses two passes of a pairwise matching algorithm applied to the matrix graph, resulting in most cases in a decrease of the number of variables by a factor slightly less than four. The matching algorithm favors the strongest nega...
متن کاملConvergence of algebraic multigrid based on smoothed aggregation
We prove a convergence estimate for the Algebraic Multigrid Method with prolongations deened by aggregation using zero energy modes, followed by a smoothing. The method input is the problem matrix and a matrix of the zero energy modes. The estimate depends only polylogarithmically on the mesh size, and requires only a weak approximation property for the aggregates, which can be a-priori veriied...
متن کاملA GPU Accelerated Aggregation Algebraic Multigrid Method
We present an efficient, robust and fully GPU-accelerated aggregation-based algebraic multigrid preconditioning technique for the solution of large sparse linear systems. These linear systems arise from the discretization of elliptic PDEs. The method involves two stages, setup and solve. In the setup stage, hierarchical coarse grids are constructed through aggregation of the fine grid nodes. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2008
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2007.11.008